Mixed Frequency Deep Factor Asset Pricing with Multi-Source Heterogeneous Information on Policy Guidance
认领作者 认领管理权限
发布日期:2023年01月19日 上次修订日期:2023年06月01日


In the era of big data, asset pricing is influenced by various factors, which are extracted from multi-source heterogeneous information, such as high frequency market and sentiment information, low frequency firm characteristic and macroeconomic information. Especially, low frequency policy information plays a significant role in the long-term pricing in China but it is barely investigated due to its textual form. To this end, we first extract policy variables from major national development plans (“Five-Year Plans”, “Government Work Reports”, and “Monetary Policy Reports”) using Natural Language Processing (NLP) technique and Dynamic Topic Model (DTM). However, traditional models are inadequate for mixed frequency data modeling and feature extraction. Then, we propose a mixed frequency deep factor asset pricing model (MIDAS-DF) that solves the asset pricing problems under the mixed frequency data environment through mixed data sampling (MIDAS) technique and deep learning architecture. Time-varying latent factors and factor loadings can be modeled from mixed frequency data directly in a nonlinear and data-driven way. Thus, the MIDAS-DF model is able to learn the nonlinear joint-patterns hidden in multi-source heterogeneous information. Our empirical studies of 4939 stocks on the Chinese A-share market from January 2003 to July 2022 demonstrate that low frequency policy information has profound impacts on asset pricing, which anchors the long-term pricing direction, and high frequency market and sentiment information have significant influences on stock prices, which optimize the short-term pricing accuracy, they together enhance the pricing effects. Consequently, pricing effects the MIDAS-DF model outperform the five competing models on individual stocks, various test portfolios, and investment portfolios. Our research about heterogeneous information provides implications to the government and regulators for decision-support in policy-making and our investment portfolio is of great importance for investors’ financial decisions.

ZEZHOU WANG ; QIFA XU ; CUIXIA JIANG ; Mixed Frequency Deep Factor Asset Pricing with Multi-Source Heterogeneous Information on Policy Guidance (2023年01月19日)http://www.cfrn.com.cn//lw/zbsc/zcdjlw/82bf110b017e4018830c89d20e47cb92.htm

*邮 箱